

UNICORE and GRIP:
Experiences of Grid Middleware Development

Denis A. Nicole
School of Electronics & Computer Science

University of Southampton
Southampton, U. K.

Abstract—We describe our experiences with the UNICORE Grid environment. Several lessons of general

applicability can be drawn in regard to user uptake and security. The principal lesson is that more effort
should be taken to be made to meet the needs of the target user community of the middleware development.
Novel workflow strategies, in particular, should not be imposed on an existing community.

Keywords: GLOBUS, GRID, HPC, UNICORE, Scientific Computing

1 Introduction
The University of Southampton was a participant in the European Union Information Society Technologies
project titled GRid Interoperability Project (GRIP IST-2001-32257) which ran from 2002 to 2004. Our
primary task was to work with the German weather service Deutscher Wetterdienst (DWD) to ensure that
their Relocatable Local Model (RLM) could be executed effectively on mixed UNICORE [1,2,3],
GLOBUS2 and GLOBUS3 (OGSI) servers.

1.1 The Meteorological Application
The RLM is a local area weather forecasting model that takes two types of input. It uses as its initial value
data the results of a forecasting run of the DWD global model GME. This is computed on a novel
icosahedron-based grid and has to be interpolated onto the conventional grid used by the RLM. It also
requires high resolution static data: orography, vegetation type, soil texture etc. for the area under simulation.
A large calculation is performed on a parallel supercomputer of the Cray T3E or IBM SP2 class at a major
centre such as CSAR (Manchester, UK), ECMWF (Reading, UK) or DWD (Offenbach, Germany). The data
used in, and output from, this run is in the form of GRIB files, a self-describing format used internationally.
The output data has to be rendered into usable graphical form and transmitted to the user scientist for
interpretation or, ultimately, for viewing by an end customer. There is the expectation that this technology
may eventually be used to provide highly accurate on-demand local forecasts to pay-per-view end users.

From the description above, it will be seen that the RLM requires a four-step workflow:
1. Data collection. All static data—orography, vegetation type and soil texture—and all data sets of a

foregoing run of the Global Model (GME), which are necessary for the designed RLM run, have to
be extracted from the CSO Oracle database located on DWD’s data server. This is regarded as high-
value data and proper precautions must be taken to secure it.

2. Data interpolation. Before using the GME data as initialisation and boundary data for the LM run,
it has to be interpolated from the icosahedron grid used in the GME into the rotated latitude-
longitude grid of the high resolution LM. This step represents a relatively small computational load
and can run on the DWD facilities, although it can generate large volumes of output data.

3. LM run. The main step is to run the Local Model on a high performance supercomputer using the
data from step two. This represents the principal computational load and it is desired to offload this
to a suitably brokered service.

4. Visualisation. After the LM run is finished, the user can transfer the data files back to their own
system and post-process them at will or use a visualisation facility on the high performance system
to generate graphical data and transfer this back for further use.

The bulk of this paper describes the lessons learnt during the GRIP work which might hopefully be of
value to other Grid software developers. In most cases they are rather generic and apply equally to
GLOBUS and OMII [5] as they do to UNICORE. We can group the issues into two principal domains: user
uptake and security. Within each domain we make observations about the problems found and the solutions
adopted or proposed.

1.2 UNICORE
The core software technology of GRIP was UNICORE. This is a grid workflow system that has been in
development from 1997, initially under funding from the German Ministry for Education and Research
(Bundesministerium für Bildung und Forschung, BMBF) and more recently the European Union
Information Society Technology programme. It has been described elsewhere[1]. From the user’s
perspective, a Java application, the UNICORE Client, is provided and all interaction with the system takes
place through this client. The user may use a graphical component of the client to construct a workflow of
job steps to run on a variety of remote server systems. These may be sequenced and may transfer data
between steps. Each step can itself be constructed through other GUI interfaces; these can either represent
standard facilities such as shell scripts and FORTRAN compilations or can be dedicated GUIs for specific
end-user applications such as CPMD Gaussian or Amber. The Client provides mechanisms to display the
progress of a job through the various servers and to return results to the user.

The server side of UNICORE is three-layered. The Gateway provides a simple HTTPS portal for each
site which allows only authorised users access to the rest of the UNICORE system behind the firewall. The
Network Job Supervisor (NJS) is a larger Java code which normally runs on a small dedicated system within
the site firewall. There is one NJS instance for each compute server at the site. This uses templates (the so-
called Incarnation DataBase, IDB) to translate the local component of a job into a sequence of small shell
scripts which are passed on via a socket to the Target System Interface (TSI); this is normally a small perl
script running on the compute server itself.

The NJS processes only the component of a job which has been targeted at its own server; other
components are forwarded at the appropriate time to the NJSs associated with the various requested servers.

The UNICORE code base contains three substantial components. The Client and NJS have been
described above. The shared data structures of UNICORE are represented by the Abstract Job Object (AJO)
classes. These 256 classes constitute a Java [4] ontology for supercomputer job submission, encompassing
file transfer, various standardised job steps and resource allocation.

2 User Uptake
As mentioned in the introduction, the UNICORE activity has been funded continuously since 1997 through
a variety of projects: UNICORE (1997–1999), UNICORE Plus (2000–2002, €2,400,000), EUROGRID
(2000–2004, €3,450,000) and GRIP (2002–2004, €1,920,000). A fortunate by-product of the UNICORE
architecture is that we can relatively easily estimate usage of the UNICORE grid by gathering statistics at
one of the sites. When a UNICORE Client starts up it connects to each site on its Grid, as represented at the
UNICORE site server, in order to check for output. We can thus gather usage statistics from the Gateway
logs at just one of the sites. The statistics for late 2003 are shown in figure 1. The results are salutary; an
average of three people per day used the Grid. Detailed examination of the logs show that about half of this
usage is by software developers engaged in the funded UNICORE projects; the remainder represents a small
group of end users.

0

1

2

3

4

5

6

31/M
ar/

03

28/A
pr/0

3

26/M
ay

/03

23/Ju
n/03

21/Ju
l/0

3

18/A
ug/03

15/Sep
/03

13/O
ct/

03

10/N
ov/03

08/D
ec/

03

05/Ja
n/04

Figure 1: UNICORE Grid usage: A plot of the average number of distinct Unicore users
running with DWD in their Unicore site server each day. The October data is missing.

User uptake of the UNICORE system has been disappointing. In some cases, administrative decisions at

supercomputer sites have required uses to use UNICORE as the only permitted access mechanism; this has
included academic users at DWD. In others, users have produced specific arguments as to why they must be
permitted alternative supercomputer access mechanisms; this has included operational users at DWD. We
have established a number of issues that have led to this poor uptake but, unsurprisingly, they are all
associated with a perceived or actual failure to meet user needs.

2.1 Extensibility of the UNICORE Grid
Several factors conspired to make it difficult to add new compute servers to the UNICORE Grid. The first
issue is associated with the PKI X509 certificates used by UNICORE. Personal user X509 certificates have
become the lingua-franca of international eScience. They can freely be used for authentication in the
Globus, UK eScience, EGEE and other communities. UNICORE user certificates are also of this standard
form and can be used interchangeably with the other Grids, so long as the required root certificates are
installed at the Gateway.

The UNICORE system requires additional certificates for the server side. The gateway certificates do not
need any special properties, but each NJS also requires a certificate. These are required to hold a special
extension object identifier (OID) assigned by the IANA to the Leibniz Computer Centre of the Bavarian
Academy of Sciences (LRZ). This OID, named "unicoreKeyUsage" (1.3.6.1.4.1.7650.1) is required to have
the value "unicoreNJS" for an NJS certificate. There are other assigned values for other UNICORE roles,
but they are currently ignored. The NJS OID is necessary to prevent an ordinary user from spoofing an NJS
and conducting a replay attack using another user’s job. Unfortunately, many nationally accredited CAs are
unwilling to issue certificates carrying unusual privileges and this has made it difficult to leverage existing
CA facilities; apart from the excellent service provided by the University of Manchester to EUROGRID and
associated projects, arrangements for UNICORE CAs have been a continuing problem. Remedy: Only use
completely standard PKI facilities.

There is a second problem associated with the flow-through nature of the UNICORE workflow. Each
NJS in the workflow sequence has to connect to the NJS associated with the next host server. This requires
the NJSs in a workflow to recognise and accept each other’s certificates. Thus even if a user is authenticated
into two Virtual Organisations (VO), they cannot operate a shared workflow on both VOs computers unless

the VOs are configured to authenticate each other. The same problem makes it impossible for a user to
incorporate their own local systems into a workflow. Remedy: Sequence workflows from a central workflow
server, rather than by flow-through. This is the natural way to operate modern BPEL workflow and also
makes it much easier to track deviant workflows associated with failed job steps.

A final problem with extensibility arises from the need to establish trust in the UNICORE system. Major
supercomputer sites take security very seriously and it is difficult to persuade them to abandon their tried
and tested strategies. The European Centre for Medium-Range Weather Forecasts (ECMWF), for example
has a sophisticated strategy, ECAccess which is based on temporary PKI certificates whose issue is
authenticated using SecurID cards; actual access is then conducted using a modified FTP client. The site
would not willingly give up this security and has insisted on special modifications to the UNICORE Client.
Remedy: The middleware provider must provide clear evidence of sound software engineering and must
establish a bond of trust with major site managers. Perl scripts running as root do not inspire confidence.

2.2 Workflow
UNICORE has its own workflow model, allowing a variety of sequential, concurrent, test and loop
constructs. Through the normal client, this can only be accessed by manipulating job step blobs and
workflow arrows. Unfortunately, it completely fails to meet the expectations of users. The compilation of a
single FORTRAN source file, for example, represents a job step in the UNICORE ontology. Thus, if the
abstract support for the compile step is to be used, the entire build process for a user application must be
crafted, file by file, from blobs and arrows. Otherwise, the automatic mapping of compilation onto different
hardware platforms is lost. The users, of course, expect to use their existing techniques to manage a build.
At its simplest, this means shell scripts and Makefiles. More complex builds tend to use perl or, in some
cases, tcl/tk and python. Remedy: Middleware must show sensitivity to existing user practice. If a portable
build facility is to be provided, it must offer a natural way of incorporating the target-specific information
into the existing build process, say by providing string substitutions in the existing scripts.

There is a much more serious problem with scheduling. The operational forecasters at DWD were
completely unable to use UNICORE because its simple workflow between compute hosts did not meet their
needs. They use SMS [6], a sophisticated scheduler developed at ECMWF which submits tasks (jobs) and
receives acknowledgments from the tasks when they change status and when they send events. SMS knows
the relationships between tasks, and is able to submit dependent tasks when a given task changes its status,
for example when it finishes. The UNICORE workflow cuts across the SMS functionality. Researchers at
DWD use another experimental system, NUMEX, not supported by Unicore. Remedy: This was a
requirements capture problem. If UNICORE was to offer workflow support, it needed to be in empathy with
the existing facilities.

2.3 Job Preparation
A major feature of UNICORE is its application-specific Job Preparation Agents (JPA). These are
implemented as signed java plugins which a user can configure to be loaded into their UNICORE Client.
Unfortunately, writing a JPA is difficult. The author has to write in Java and has to have a deep
understanding of the UNICORE AJO ontology as well as being aple to program a Swing GUI. To make
matters even worse, these JPAs have to be updated on each evolution of the UNICORE AJO and as the
client applications evolve. This latter point is important; much of the business logic of a JPA is provided to
shield the end user from various input restrictions in the application. These restrictions typically change with
each version.

It is frequently the case that major applications already have their own job preparation GUI. An example
would be the UK Meteorological Office Unified Model [7]. This has the Unified Model User Interface
(UMII) which is based on the Generic Hierarchical User Interface (GHUI) which in turn is written in tcl/tk.
This interface has 200 windows and 1000 questions; rewriting it in Java would be a major undertaking. In
general, these existing application-specific job preparation GUIs are rarely written in Java as scripting
languages are much more popular: perl, tcl/tk and Python. Remedy: The client must support job preparation
using existing popular scripting languages. Again, template substitution should limit the amount of
rewriting required to support remote job preparation.

In addition to the support for scripting languages, something needed to be done to simplify Java JPA
creation. Early in the UNICORE project, a team at one of the application sites developed GuiGen [8], a GUI

generator which could rapidly produce simple JPAs. Unfortunately, it was not adopted by the core
UNICORE developers and quickly became outdated. Within the GRIP project, we were able to revive this
approach at much lower cost by leveraging standard Java technologies: Beans and XML serialisation.

The primary aim of the new GUI tool is to allow useful Grid results to be delivered to end users without
anyone in the application team having to develop a deep understanding of a complex programming model
such as the UNICORE Abstract Job and its associated classes. It is nevertheless straightforward to
incorporate complex business (scientific) logic in the client GUI by writing and deploying conventional,
well-documented, Java Beans. Indeed, the whole GUI may readily be constructed non-programmatically in
a standard Bean Box such as Borland Jbuilder. The jobflow is easily initially constructed from an exemplar
job built with the original scripting and other plugins for UNICORE. This exemplar job may then be edited
under advanced mode in the new GUI to introduce fields substituted by the bean components. Not only does
this provide a quick and easy way to capture a jobflow; it also completely deskills the process of updating
the GUI to accommodate new software versions of the target applications. The two application-specific
parts of the GUI reside in XML files. This provides insulation from version changes in UNICORE. We
would normally expect that only the application-neutral plugin code will have to change as UNICORE
evolves. This decoupling solves the familiar languages-times-targets problem from compiler engineering;
modifications to the application and to UNICORE are decoupled.

2.4 Interactive Access
During the GRIP project, it rapidly became clear that the user community required full interactive access to
the compute hosts. This was partly for reassurance; interactive examination of the queues and filestore
would give confidence that the submitted jobs were proceeding as expected. It was also essential for
program development and particularly for access debuggers and performance tools such as Vampir and
TotalView. The absence of this basic facility highlights a persistent problem with Grid environments—
certainly including both Globus and UNICORE—that they are not used by either middleware or application
developers. The developers use traditional tools such as SSH and X-windows rather than the end-user
middleware. Indeed, for those developing scientific applications, there is little alternative as most
sophisticated debuggers insist on X-windows. The effect is to create a “them and us” situation in which the
middleware development tends to proceed largely disassociated from any immediate user community.

At DWD, interactive access to the supercomputers was via a two-step login. SSH2 was used to access a
bastion host; from there the user could Telnet into the required system. A side effect of this mechanism was
that remote X-windows access was impossible. Within GRIP, we were able to subvert the UNICORE
Gateway to provide a secure channel into the main systems. This effort, like that in the Universal (RLM)
GUI should reduce the damaging disconnect. Users enjoy all the security and ease-of use advantages of
single signon while retaining their access to familiar host-based tools. Furthermore, this access is maintained
in a manner totally independent of the client platform, and without compromising security on the client by
exposing open sockets at a client-side X-server.

There are four key components to this new interactive capability: an ssh2 implementation, a vt100/Xterm
emulation, a stand-alone X server in Java and a special technique to allow us to use the Java keystore (JKS
or JCEKS) inside the Pallas/Intel client to authenticate an SSH connection. The details are explained below;
it provides something of a salutary lesson about the dangers of adopting open-source security code. The
Bouncy Castle software having this vulnerability is used by both UNICORE and Globus.

The combination of these components provides a facility of considerable utility. Firstly, we have a truly
platform independent secure login facility with responsive full-screen access: entirely suitable for pine, vi,
emacs etc. Secondly, the integrated X-server avoids the need to expose vulnerable sockets on the client; the
SSH, vt100 and X-server all communicate as Java threads. A screenshot is shown in figure 3.Thirdly, the
integration with the UNICORE client and its keystore allows a genuine single-sign-on and permits uses to
use their standard X509 certificates to access unmodified ssh servers, using a tool within the user interface
to generate public keys in a suitable format. Finally, the UNICORE client is able to use the plugin feature of
the standard unmodified UNICORE Gateway to provide a portal through the site firewall.

2.5 Performance
If we take the more trivial first, then an immediate complaint of users in 2002 was the unresponsiveness of
the whole system. Client startup was slow for users running older workstations and job submission also

required progress through layers of Java servers. This has naturally improved with time as workstations are
upgraded and Java-based systems are now wholly acceptable. It nevertheless generated significant resistance
to early adoption; work proceeded much more quickly within DWD using ftp and telnet.

There is a more subtle performance issue exposed by our deployment of a special TSI as an interface to
remote Globus servers. It turns out that the NJS maps the complex tree structure of an Abstract JOB into a
long sequence of short shell scripts which create directories, move files etc. No attempt has been made to
optimise this sequence as there is the assumption that the NJS and TSI are closely coupled. Each script
requires a completion acknowledgement before the next can be sent. Unfortunately, infelicities in the
Globus installation at some supercomputer sites, partially associated with attempts to validate the remote
site by making a reverse connection, mean that it can take ten seconds to start up a script under Globus as it
waits for a firewall-blocked connection to time out. The overall responsiveness of the UNICORE/Globus
system becomes unacceptable.

3 Security
In the process of developing the UNICORE system, we exposed a number of security[9] issues. Two are

technical and one is simply the Grid incarnation of a well known problem in user management. These real
vulnerabilities compound the difficulty of persuading sites to adopt Unicore as a replacement for established
mechanisms such as SecureID (at ECMWF), SSH (at DWD) and Globus (at CSAR, Manchester).

3.1 Code Injection
Code injection is typically associated with attacks on Web-based e-Business systems. Carefully crafted
query strings sent from a web browser are misinterpreted as SQL commands when the server naively
presents them to the database engine. Unfortunately, the same problem can easily arise with perl scripts;
communication between the UNICORE NJS and TSI was insecure in this regard.

Messages over the socket from the NJS to the TSI are delimited by
ENDOFMESSAGE\n.

These messages are untainted simply by removing the trailing ENDOFMESSAGE, without attempting to
parse their contents. This action is accompanied by the comment:

I trust the source! and the setuid/setguidis downgrading!
Such possible problems were well understood by the authors of perl; the tainting feature is especially

designed to reduce these risks.
Unfortunately, an end user was free to inject whatever string they wish into this protocol by, for example,

asking to access a file with a carefully crafted name. A particular case, when talking to a real NJS, which
frightened us was the possibility of a malicious client generating an AJO that contains file imports, where
the filename has embedded within it something like:

ENDOFMESSAGE\n#TSI_IDENTITY victim NONE\nENDOFMESSAGE\n#TSI_EXECUTESCRIPT\n
 ...hostile script...\nENDOFMESSAGE\n

This would have the effect of executing hostile script under the privileges of any chosen user.
Remedy: Careful code audits are required before deployment to live operational systems. Explicit cases
where language security features are circumvented call for special attention

It is interesting to observe that several system administrators were nervous about installing the TSI script
on their operational supercomputers; as it turned out, their caution was justified.

3.2 Stealing Private Keys
The UNICORE Client makes use of the Bouncy Castle library. Unfortunately, this library was not designed
with the expectation that it could be executed by code that is not wholly trusted.

It is well known that passing objects back to trusted code from untrusted routines can be a general source
of difficulty. The key point is that, if trusted code allows untrusted code to “handle” one of its objects, then
it is usually essential that the object be “final” so that the untrusted code cannot subclass it to introduce
misbehaving methods.

It turns out that the Bouncy Castle [10] package (used by Globus and Unicore) has just the above
vulnerability. This turns out to be useful to us, but perhaps alarming to system administrators. The
Interactive Job facility has to authenticate an SSH, not SSL, channel. The protocols differ and it does not
seem to be possible to authenticate an SSH channel without direct access to the private key. This is achieved

in our interactive plugin by subclassing the X509V3CertificateGenerator class. The code exploits
the fact that X509V3CertificateGenerator is not a final class; it simply subclasses it to introduce a
key-stealing method which, in this case, is used only for SSH authentication.

Of course, the real problem is that any plugin can routinely harvest private keys in this way. UNICORE
plugins have to be signed, but the user might reasonably expect that the exposure associated with a bad
plugin is to submitting a badly formed job; there is no reason that plugins should be allowed to steal keys in
this way.

3.3 General key security
The UNICORE client improves on many other eScience Grid environments by providing a closed
mechanism for creating, certifying and storing user private keys. Other systems commonly use Internet
Explorer, Netscape (often Netscape 4) or openssl scripts to manage the key issue process. The effect is to
leave private keys in small files scattered over the user’s workstation, often protected by weak passwords
that were intended only to move temporary files. In contrast, the UNICORE Client handles the entire
process, keeping the users secret data locked in a Java keystore. Furthermore, the Client can be used to insist
on a reasonable choice of keystore password. In aggregate, user key handling in UNICORE is typically
better than the norm for, say, Globus.

Unfortunately, there remain serious threats to the private keys. UNICORE encourages an nomadic style
of use; a user may freely roam to any workstation onto which they can download the Client, taking their
keystore with them. As a result, private keystores are easy to harvest and many would succumb to a brute-
force dictionary attack. Perhaps the biggest risk, however, is associated with spyware. It is relatively easy to
cause keyboard logging software to be installed on a workstation; this easily enables both keystore and
password to be stolen.

Olle Mulmo, Security Architect for the EGEE project will have us believe that the only remedy is to
“Remove credentials from users’ desktops” as “On the client side, we have surrendered the desktop” [11,
12]. Remedy: There are two partial solutions: secure hardware keystores or retaining all user keys only on
trusted key servers.

References
[1] D Breuer, D Erwin, D Mallmann, R Menday, M Romberg, V Sander, B Schuller and P Wieder, Scientific

Computing with UNICORE, NIC Symposium 2004 Proceedings (2004), 429–440.
[2] D Erwin, UNICORE - a Grid computing environment, Concurrency and Computation: Practice and Experience, 14

(2002), 1395–1410.
[3] A Streit, D Erwin, Th Lippert, D Mallmann, R Menday, M Rambadt, M Riedel, M Romberg, B Schuller and P

Wieder, UNICORE - From Project Results to Production Grids, arXiv.org cs.DC/0502090.
[4] V Sander, D Erwin and V Huber, High-performance computer management based on Java, Future Generation

Computer Systems, 15 (1999), 425–432.
[5] M Atkinson, D DeRoure, A Dunlop, G Fox, P Henderson, T Hey, N Paton, S Newhouse, S Parastatidis, A

Trefethen, P Watson, and J Webber, Web Service Grids: An Evolutionary Approach, (2004).
http://www.omii.ac.uk/paper web service grids.pdf

[6] SMS—Documentation, ECMWF. http://www.ecmwf.int/publications/manuals/sms/documentation/index.html
[7] Unified Model User Guide, Met Office, (2004).
[8] AReinefeld, HStüben Florian Schintke and G Din, GuiGen: A Toolset for Creating Customized Interfaces for Grid

User Communities, Future Generation Computer Systems, 18 (2002), 1075-1084
[9] T Goss-Walter, R Letz, T Kentemich, H.-C. Hoppe and P Wieder, An Analysis of the UNICORE Security Model,

Published Global Grid Forum Document GFD.18 (2003).
[10] Bouncy castle crypto APIs, The Legion of the Bouncy Castle, (2004). http://www.bouncycastle.org/
[11] Olle MULMO, Scaling up, surely. But scaling up securely?,Presentation given at the UK e-Science Workshop on

Grid Security Experiences and Practices, Oxford, July 2004, EGEE Document.
https://edms.cern.ch/file/503080/1/2004-07-09-security-workshop-oxford.ppt

[12] Olle Mulmo et al., Global Security Architecture, EGEE Deliverable DJRA3.1, (2004).
https://edms.cern.ch/file/487004/1.1/EGEE-JRA3-TEC-487004-DJRA3.1-1.1.pdf

