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Abstract. ESBMC is a context-bounded symbolic model checker for single- and
multi-threaded ANSI-C code. It converts the verification conditions usingdiffer-
ent background theories and passes them directly to an SMT solver.

1 Overview

ESBMC is a context-bounded symbolic model checker that allows the verification of
single- and multi-threaded C code with shared variables andlocks. ESBMC supports
full ANSI-C (as defined in ISO/IEC 9899:1990), and can verifyprograms that make use
of bit-level operations, arrays, pointers, structs, unions, memory allocation and floating-
point arithmetic. It can reason about arithmetic under- andoverflows, pointer safety,
memory leaks, array bounds violations, atomicity and orderviolations, local and global
deadlocks, data races, and user-specified assertions. However, as with other bounded
model checkers, ESBMC is in general incomplete.

ESBMC uses the CBMC [2] frontend to generate the verificationconditions (VCs)
for a given program, but converts the VCs using different background theories and
passes them to a Satisfiability Modulo Theories (SMT) solver. ESBMC natively sup-
ports Z3 and Boolector but can also output the VCs using the SMTLib format.

ESBMC supports the analysis of multi-threaded ANSI-C code that uses the syn-
chronization primitives of the POSIX Pthread library. It traverses a reachability tree
(RT) derived from the system in depth-first fashion, and calls the SMT solver whenever
it reaches a leaf node. It stops when it finds a bug, or has explored all possible inter-
leavings (i.e., the full RT). This combination of symbolic model checking with explicit
state space exploration is similar to the ESST approach [1] for SystemC.

2 Verification Approach

We model a program as a transition systemM=(S,R, S0), whereS is the set of states,
S0 ⊆ S the initial states, andR ⊆ S × S the transition relation. A states ∈ S consists
of the values of all program variables, including the program counterpc. We useI(s0)
to denote thats0 ∈ S0 andγ(si, si+1) to denote the constraints that correspond to a
transition between two statessi andsi+1.

Given a transition systemM, a safety propertyφ, a context switch boundC, and a
boundk, ESBMC builds an RT that represents the program unfolding for C, k, andφ.



For each interleavingπ that passes through the RT nodesν1 to νk, it derives a formula
ψπ
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γ(sj , sj+1) ∧ ¬φ(si) which is satisfiable iffφ has a coun-

terexample of depthk or less that is exhibited byπ. SinceI(s0) ∧
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represents an execution ofM of lengthi, ψπ
k is satisfied iff for some time stepi ≤ k

there exists a reachable state alongπ at whichφ is violated. The SMT solver then pro-
vides a satisfying assignment, from which we can extract a counterexample trace to the
property violation. Ifψπ

k is unsatisfiable, we can conclude that no error state is reachable
in k steps or less alongπ. Finally, we useψk=

∨
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π
k to check all interleavings.

ESBMC uses a quantifier-free fragment of a logic of linear integer arithmetics with
arrays and uninterpreted functions to represent the VCs derived for a given ANSI-C pro-
gram. Scalar datatypes can be represented either as bitvectors (i.e., using the SMTLib
logic QF AUFBV), or as abstract integers (i.e., QFAUFLIA). Floating point arithmetic
is approximated either by abstract reals (i.e., using the SMTLib logic AUFLIRA), by
fixed-point arithmetic using bit vectors, or by rational arithmetic over abstract integers.
Structures, unions, and pointer types are encoded using tuples [3, 4]. ESBMC uses a
simple but effective heuristic to select the best data representation and SMT solver.

ESBMC uses an instrumented model of the Pthread synchronization primitives to
handle multi-threaded code [3]. The model allows an unbounded set of threadsT , but
ESBMC will only explore a finite number of context switches. It assumes that an en-
abled threadtj ∈ T can transition between statements to any enabled thread, and com-
putes all states for which a transition exists to (implicitly) build the RT. ESBMC as-
sumes sequential consistency, and by default assumes that variable accesses in individ-
ual statements are atomic.

3 Architecture, Implementation, and Availability

ESBMC is implemented in C++. It has been branched off CBMC v2.9, and still uses
its parser, goto conversion, and core of the symbolic execution. The goto conversion
replaces all control structures by (conditional) jumps, which simplifies the program
representation. The symbolic execution of this goto representation converts the pro-
gram into SSA form and unrolls loops and recursive functionson-the-fly, generating
unwinding assertions that fail if the given bound is too small. It also generates the VCs
for the safety properties and user-specified assertions.

Changes to the CBMC components include the addition of the new safety properties
and more optimizations (e.g., better constant propagation), and the integration of native
SMT backends. In order to support the analysis of multi-threaded code ESBMC im-
plements a partial-order reduction (POR) [3, 5] scheme to reduce the number of states
that have to be explored. It first applies the visible instruction analysis POR, which re-
moves the interleavings of instructions that do not affect the global variables, followed
by the read-write analysis POR in which two (or more) independent interleavings can be
safely merged into one. Additionally, it implements a two-level symbolic state hashing
scheme [6] that represents a particular RT node and all constraints affecting a particu-
lar assignment to a variable separately. Since each new RT node can only change the
(symbolic) value of at most one variable, this scheme reduces the computational effort,
as it allows us to retain the hash values of the unchanged variables.



User Interface.ESBMC can be invoked through a standard command-line interface or
configured through an Eclipse plug-in. When a property violation is detected, it pro-
duces a counterexample trace in the CBMC format. The plugin visualizes such traces
and provides direct access to the corresponding code.

Availability and Installation. Self-contained binaries for 32-bit and 64-bit Linux envi-
ronments are available atwww.esbmc.org; versions for other operating systems are
available on request. The competition version only uses theZ3 solver (V3.1). It assumes
a 64-bit architecture and uses experimentally determined unwinding bounds; setting ex-
plicit context switch bounds is not required for the given concurrency benchmarks. It
only checks for the reachability of the error label and ignores all other properties, in-
cluding unwinding assertions. It is called as follows:
esbmc --timeout 15m --memlimit 15g --64 --unwind <n>
--no-unwinding-assertions --no-assertions --error-label ERROR
--no-bounds-check --no-div-by-zero-check --no-pointer-check <f>

4 Results

With unwinding assertions enabled, ESBMC proves 30 programs correct and finds er-
rors in 27. However, it also claims errors in two correct programs and fails to find
existing errors in another nine. ESBMC’s performance is largely similar across all cat-
egories, although unwinding assertions and timeouts are, as expected, concentrated on
the larger benchmarks.

With unwinding assertionsdisabled, a correctnessclaim is not a full correctness
proof, because errors could occur for larger unwinding bounds. Infact, the number of
false negatives/positives increases to ten and nine, resp., but their rate remains roughly
the same, so that ESBMC’s overall performance improves markedly: with 121 programs
rightly claimed correct and 71 errors identified, it achieves a total score of 249. Four
programs do not conform to the supported ANSI-C standard andcause parsing errors.
The remaining programs time out during the symbolic execution (21) or fail with an
internal error (41). These errors results are mostly causedby problems in ESBMC’s
pointer handling that are exposed by the excessive typecasts in the CIL-converted code.
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