
Motivation
Bounded Model Checking (BMC) techniques based on Boolean Satisfiability (SAT) or Satisfiability Modulo Theories (SMT) have been
successfully applied to verify single and multithreaded programs and to find subtle bugs in real programs. The idea of the BMC
techniques is to check the negation of a given property at a given depth, i.e., to find bugs in a program up to a limit of iterations k.
Typically, the BMC techniques are only able to falsify properties up to a given depth k; they are not able to prove the correctness of
the system, unless an upper bound of k is known, i.e., a bound that unfolds all loops and recursive functions to their maximum
iteration.

We are looking at interval and complex hull analysis linked with k-induction (loop unrolling) to try and automate loop verification by
induction. Interval analysis can automatically imply termination conditions; k-induction can simplify loop invariants to the extent
that they can be guessed syntactically.

Handling Loops in Bounded Model
Checking using k-Induction and Interval Analysis
Mikhail Y. R. Gadelha. Supervisors: Denis A. Nicole, Genarro Parlato

Mikhail Yasha Ramalho Gadelha
Email: myrg1g14@soton.ac.uk
Postgrad OpenDay 15th June 2015

Fibonacci Example

integer fib(integer n) { return n < 3 ? 1 : fib(n-2)+fib(n-1); }

integer myfib(integer n) {
 integer c=1; p=1; i=2;
 while(i<n) {
 integer t=p+c;
 p=c;
 c=t;
 i++;
 }
 assert (c == fib(n)); // Post condition
 return c;
}

The ESBMC Model Checker

 Front-end

C Parser C type-
checker GOTO

Converter
Symbolic
Execution

Enconding
C and P

SMT
Solver

C source

C++
source

C++
Parser

C++ type-
checker

Verification
Result

Base Case for k <= 3

integer myfib(integer n) {
 assume(n <= 3);
 integer c = 1, p = 1, i = 2;
 if(i < n) {
 integer t = p + c;
 p = c;
 c = t;
 i++;
 assume(i < n + 1);
 assert(c == fib(i));
 }
}

The invariant (bold) is generated by interval analysis, and it
will lead to the post condition i == n.

Inductive Step for k = 2

integer myfib(integer n) {
 integer c = *, p = *, i = 2;
 {
 assume(c == fib(i));
 integer t = p + c;
 p = c;
 c = t;
 i++;
 }
 {
 assume(c == fib(i));
 integer t = p + c;
 p = c;
 c = t;
 i++;
 }

 assert(c == fib(i));
}

We get the candidate invariant by substituting i for n in the
post condition.

The candidate invariant will only works for k >= 2 because it
will take at least two loop unwindings to know all the needed
values of the variables.

