
ESBMC: bounded model 
checking for C & C++

Denis A Nicole
2013-13-02



ESBMC is a Collaboration between
• University of Southampton

– Jeremy Morse and Denis Nicole

• Federal University of Amazonas, Brazil

– Mikhail Ramalho, Mauro Freitas, Felipe Sousa, 
Hendrio Marques and Lucas Cordeiro

• University of Stellenbosch, South Africa

– Bernd Fischer 

2



ESBMC is a bounded model checker

• It exhaustively analyses all possible behaviours of  a 
(multithreaded) C or C++ program up to a fixed depth of

– loop iteration (including backward jumps and recursion),

– thread interleaving.

• Within these bounds, it checks for

– C errors: pointer errors, arithmetic errors, array bounds, 
malloc()/free(), assert() failures, data races, etc.

– Violation of Linear Temporal Logic specifications.

3



Model Checking is not Simulation
• Simulation (testing) checks correctness for a particular 

input and a particular thread interleaving.

• You need to run multiple simulations with different data 
and different timing before you get some assurance.

• Model Checking exhaustively analyses all possible 
behaviours over a range of possible inputs and generates a 
witness, a trace of program state, if there are any possible 
failures.

• Good-coverage simulation may be effective against 
“random” errors; it offers little protection against tailored 
attacks. 4



A change of viewpoint

• We used to think model checking would prove programs 
correct.

• Nowadays, we think of improving test coverage: 
performing a whole family of tests in one execution.

• And it gives an explicit failure witness.

5



The ESBMC approach
Originally based on CBMC.

1. Perform pre-processor substitution and C++ template 
expansion.

2. Simplify control flow to a GOTO  form.

3. Constant fold.

4. Unwind program into a sequence of single assignment
expressions.

5. Use an SMT solver (normally Z3) to verify the program.

6



The fundamental pattern
• We are trying to ensure that the program semantics imply 

the assertions. 

• The program semantics is a conjunction of constraints 
which can be assumed from the program structure.

• So we seek to show:
assumptions ⇒ assertions

• We do so by looking for a witness to
¬ (assumptions ⇒ assertions) ≡
assumptions ∧ ¬ assertions

7



A simple example
int i; int j=0;
for(i=1; i<4; i++) {
j = j + i*i; }

assert (j == 14);

becomes

j_0=0  ∧
i_0=1  ∧ j_1=j_0+i_0*i_0 ∧
i_1=2  ∧ j_2=j_1+i_1*i_1 ∧
i_2=3  ∧ j_3=j_2+i_2*i_2 ∧
¬ j_3=14

8



• Assignments in the program become assumptions relating 
the instantiations of the variables.

• Assertions and correctness conditions become assertions
that must be true at various points in the execution.

• The SMT solver is asked to find a set of values for the 
unknowns which satisfies an expression which is the 
conjunction of all the assumptions and the inverse of the 
conjunction of the assertions.

• Such a set of values constitutes an explicit witness that the 
program is erroneous; this can be used for debugging.

9



C semantics are complicated
• Even this simple example is potentially wrong.

• The unsigned int is guaranteed not to overflow, but it is not a 
mathematical integer. 

• The standard says it wraps modulo UINT_MAX + 1 and,
UINT_MAX ≥ 65535

• Most sane compilers would have 
UINT_MAX = 2WORD_SIZE -1

• But if you made UINT_MAX = 65536, you would get a field…
…which would enable some algebraic optimisations, e.g.

(a*4)/4    ≡   a

10



Sequencing
Sequenced before is an asymmetric, transitive, pair-wise relation between 
evaluations executed by a single thread, which induces a partial order 
among those evaluations. Given any two evaluations A and B, if A is 
sequenced before B, then the execution of A shall precede the execution of 
B. (Conversely, if A is sequenced before B, then B is sequenced after A.) If 
A is not sequenced before or after B, then A and B are unsequenced. 

Evaluations A and B are indeterminately sequenced when A is sequenced 
either before or after B, but it is unspecified which†) The presence of a 
sequence point between the evaluation of expressions A and B implies that 
every value computation and side effect associated with A is sequenced 
before every value computation and side effect associated with B.

† The executions of unsequenced evaluations can interleave.
Indeterminately sequenced evaluations cannot interleave, but can
be executed in any order.

11



Implementation
The least requirements on a conforming implementation are:

• Accesses to volatile objects are evaluated strictly according to the rules 
of the abstract machine.

• At program termination, all data written into files shall be identical to 
the result that execution of the program according to the abstract 
semantics would have produced.

• The input and output dynamics of interactive devices shall take place as 
specified in 7.21.3. The intent of these requirements is that unbuffered
or line-buffered output appear as soon as possible, to ensure that 
prompting messages actually appear prior to a program waiting for 
input.

This is the observable behavior of the program.
12



Function calls
• An argument may be an expression of any complete object 

type. In preparing for the call to a function, the arguments 
are evaluated, and each parameter is assigned the value of 
the corresponding argument.

• Wonderful: no mention of indeterminately sequenced or 
unsequenced. So, is this a correct program?

#include <assert.h>
void fun(int x, int y) {}
main() {

int i=0;
fun(i++, i++);
assert (i == 2); }

13



Undefined behaviour

This, the only colour photo 
of the Trinity test was taken 
by my old housemate’s 
(Iain Abey’s) dad.

14



No, it isn’t correct
• Expressions (but not function calls) in function arguments 

can interleave:

The compiler may choose to perform the evaluation of 
expr1 before, after, or interleaved with the evaluation of 
expr2 . There are enough people who find this surprising 
that it comes up as a regular question on the newsgroups, 
but it's just a direct result of the C and C++ rules about 
sequence points. 

Herb Sutter 
More Exceptional C++: 40 New Engineering Puzzles,
Item 20, part 1

15

http://flylib.com/books/en/3.259.1.54/1/


Division of labour (Adam Smith)
• We use SMT solvers written elsewhere (Z3, Boolector)

16



SAT Solvers
• Have very good performance

• They seek any set of assignments to the free variables that 
will make a Boolean expression true, e.g.

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ ¬x1

is satisfied by the witness

x1 = x2 = x3 = false

• You don’t get to choose the witness; the solver gives you the 
first it finds. But, if you really care, you can exclude this 
assignment and re-invoke the solver.

17



SMT solvers are a generalisation
• Linear arithmetic: multiplication is difficult!

• Uninterpreted functions

x1 =y1 ∧ x2 = y2 ⇒ f (x1, x2) = f (y1, y2)

• Array theory

read(write(A, i, x), i) = x

• And more: polynomials, bit fields…

• We can combine expressions

b+ 2 =c ∧ f (read(write(a,b,3),c−2))≠f (c−b+ 1)

18



Multithreaded programs
• In its normal mode of operation ESBMC generates separate SMT runs 

for all static interleavings of critical sections from different threads. 
This assumes the absence of data races.

• In an alternative mode, ESBMC can search for data races by exploring 
all interleavings between C statements. This is very compute-intensive. 
It is also wrong! C statements are in general not atomic. And modern 
reorderings and write pipelines make a nonsense of even the notion of 
interleaved execution.

• We are developing ESBMC to follow the new C11/C++11 memory 
model. Interleaving will then only be necessary at barriers associated 
with mutexes, atomic variables etc. Any potential race between barriers 
is an error, so far fewer interleaves need be considered.

• Note that there is no workable thread semantics before C11. 
(H-J Bohm, 2004) 19

http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf


Infinite programs
• We can use a variant of k-induction to check safety 

properties for infinitely executing (e.g. server) programs.

• This allows us to detect a program which repeats a set of  
reachable states.

• If such a repeat (or contraction) is found, then no new 
safety violations can arise.

20



Proof by induction: if we are lucky enough to 
be given a loop invariant

int i=0,j = 0;
while (i < 10000) {

i++; j = j + i;
assert(j == i*(i+1)/2); }

assert(j == 50005000);

Base case:                Inductive step:
int j=0; i=0; int i, j;
i++; j = j + i;           assume((i>0)&(i<10000)); //overflow?
assert(j == i*(i+1)/2);   assume(j == i*(i+1)/2);

i++; j= j + i;
Finalisation:             assert(j == i*(i+1)/2);
int j, i=10000;
assume(j == i*(i+1)/2);
assert(j == 50005000); 21



Linear Temporal Logic properties
• Predicates on global (volatile) variables can be used to 

construct a Linear Temporal Logic specification for the program.

• The LTL can include both safety properties (such as class 
invariants) and liveness properties.

• In the case of infinite programs, bounded unwinding is unlikely 
to prove an LTL specification valid. It can find errors, and it can 
signal the validity of the LTL expression under various future 
behaviours.

• This capability is enabled by using a monitor thread, with 
optimised interleaving, to track the states of a nondeterministic 
Büchi automaton.

22



23



LTL algebra
• There is an implicit overall prefix A (“over all possible futures”), if you 

want to read the LTL as CTL*.

• Only U and X are fundamental

F ψ ≡ true U ψ

G ψ ≡ ¬F¬ ψ

ϕ R ψ ≡ ¬ ϕ U¬ ψ

• Fixed points: unwinding into a state machine (Büchi Automaton)

ϕ U ψ ≡ ψ ∨ (ϕ ∧ X(ϕ U ψ))

The U operator is expressively complete with respect to first-order 
temporal properties on continuous, strictly linear temporal orders 
(J A W Kamp, 1968). 24

http://www.cs.tau.ac.il/%7Erabinoa/pub/csl-kamp.pdf


Büchi Automata

G({pressed}->F{charge>min}) !G({pressed}->F{charge>min})

The (nondeterministic) automaton accepts if it 
can visit an accepting state infinitely often.

25



Stutter-independent bounded trace semantics

Stutter-independence (Lamport) is typical of software verification. 
In contrast to hardware verification, the clock tick has little 
significance, so we expect software LTL specifications to be writable 
without the X (next) operator. Indeed, the X operator can be 
eliminated from any stutter-independent formula.

26



LTL expressions
• Safety e.g. a class invariant which must hold (almost) 

everywhere, in contrast to a point assert(P) which only 
has to hold at one point in the execution.
G{P}

or
G{outside_instance_methods & P}

• Co-safety or convergence. Something must eventually 
happen.
F{P}

• True liveness. Events always get a response
G({P}->F{Q})

27



True liveness example
unsigned int i = 0;
int main() {

while(1)
i++; }

LTL specification:

G({i%2==0} -> F{i%3==0})

As we increase the unwind bound from 1 to 12, ESBMC reports:

28



Red herrings
• We only consider infinite (ω-language) traces.

• We avoid the weak until
true UW ψ ≡ true

• We avoid the strict future until (stutter confusion)
false U> ψ ≡ X ψ

• We don’t need past time operators: our programs start but 
do not finish: we have infinite stutter extension.

• A nondeterministic Büchi automaton is stronger than LTL 
(it does S1S), but why should we care? Our C monitor can 
calculate and track any observable state, if necessary.

29



Partial loops
• What do we do if we run out of loop iterations?

– Give up?

– Press on regardless?

• In ESBMC it’s the user’s choice.

• If we “press on regardless”, we have completed a number of 
whole loop iterations.

• So, we respect the loop invariant but not the termination 
condition.

30



More partial loops
• Very rarely, it might be better to keep the termination 

condition instead:

int j = 0;
for ( i=0; i<= 10000; i++) {

j = j + i*i; }
assert(i == 10001);

• Future work: we could keep both loop invariant and 
termination condition, but relax some other assumptions.

31



Improved performance in 2012
• State hashing

We detect when different interleaves result in the same set 
of reachable states and merge the models.

• Monotonic partial order reduction
Optimal reduction in the number of interleavings.

• k-induction

• LTL specifications

32



Improved performance in 2013
• The old CBMC string-based program intermediate representation has 

been replaced with a C++ class hierarchy, resulting in a 200% 
performance improvement.

• To avoid very large SMT expressions which calculate possible indexes 
into structures, we extended a static pointer analysis to determine the 
weakest alignment guarantee that a particular pointer variable 
provides, and inserted padding in structures to make all fields align to 
word boundaries.

• In cases where our static analysis does not allow us to determine loop 
bounds, we now follow an iterative scheme, running the SMT solver on 
increasing unwinds until it determines that the loop must have 
terminated.

33



C++
• A major set of extensions to ESBMC allows us to support 

C++, including templates and the containers of the 
standard template library.

• We are able to manipulate containers efficiently via a direct 
model of the container properties, without having to 
expand a specific implementation of the container library.

34



Improvement by competition

• The field of C model checking research is now large enough to support 
annual competitions; perhaps the best known is that held in 
conjunction with the International Conference on Tools and 
Algorithms for the Construction and Analysis of Systems (TACAS).

• The team is proud to report that ESBMC v1.17 won the Gold Medal in 
the SystemC and Concurrency categories and the Bronze Medal in the 
overall ranking of the first International Competition on Software 
Verification at TACAS 2012.

• ESBMC v1.20 won the Bronze Medal in the overall ranking of the 
second competition at TACAS 2013.

• Our entry for 2014 has just been submitted.

35


	ESBMC: bounded model checking for C & C++�Denis A Nicole�2013-13-02
	ESBMC is a Collaboration between
	ESBMC is a bounded model checker
	Model Checking is not Simulation
	A change of viewpoint
	The ESBMC approach
	The fundamental pattern
	A simple example
	Slide Number 9
	C semantics are complicated
	Sequencing
	Implementation
	Function calls
	Undefined behaviour
	No, it isn’t correct
	Division of labour (Adam Smith)
	SAT Solvers
	SMT solvers are a generalisation
	Multithreaded programs
	Infinite programs
	Proof by induction: if we are lucky enough to be given a loop invariant
	Linear Temporal Logic properties
	Slide Number 23
	LTL algebra
	Büchi Automata
	Stutter-independent bounded trace semantics
	LTL expressions
	True liveness example
	Red herrings
	Partial loops
	More partial loops
	Improved performance in 2012
	Improved performance in 2013
	C++
	Improvement by competition

