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Scope 
• This talk is not about Distributed Computing. That topic 

addresses other issues: 

– Unreliable communications/systems 

– Trust and trust boundaries 

– Hetrogeneous systems, although these will creep in… 

 

• Today, we are discussing Parallel Computing 

 [No references, just keywords. Use Google] 
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A sad story 

• You throw together (pair program) a fast new concurrent 
system.  

– It goes fast  

– It works during testing (you can’t type very fast) 

– The customer loves it (on time and on cost) 

 

• You go back to U Waterloo(?) to finish your degree. 

3 



Later you read about your system… 
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http://sunnyday.mit.edu/papers/therac.pdf 

http://sunnyday.mit.edu/papers/therac.pdf


It just gets worse  
1. You need enough locks to prevent uncontrolled data sharing. 

This causes death. 
 
You are now one step ahead. You may not sell any product, but 
you won't have to explain your code to a coroner, as it 
probably does not do anything. 
 

2. You might now get deadlock. Use a standard technique (eg 
breaking symmetry/ breaking cycles or preventing resource 
filling) or work something out and test your idea by model 
checking.  
 
You now have code that works. Marketing can probably sell it. 
Of course, there's every probability that your carefully locked 
code runs slower than a sequential solution.  
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Historic approaches 

• Programming languages were fashionable in the ’80s 
 

“Embrace our new world and the advantages of 
parallelism will flow automatically.” 
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So we tried 

• Dataflow: parallel subexpression evaluation 

– Manchester Dataflow 

– SISAL: single assignment language 
 

• Functional: parallel argument evaluation 

– Transputer-based Alice hardware and (eager) Hope 

– Lazy languages: Miranda (David Turner), Orwell, Haskell 

• Leading to Bluespec and other current activity 
 

• Logic 

– Parlog: AND parallel Prolog 
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And tried… 

• Parallel Objects 

– Doom: hardware (too-slow processor coupled to vector units with 
too-weak memory addressing) 

– Pool: inheritance can interact badly with parallelism. 
(Inheritance Anomaly)  
 

• Parallel processes 

– Transputers and now the XMOS XC-1. 

– occam: static compile-time concurrency, leading to XC. 

– MPI is still the preferred way of coding big science 
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occam has an algebra 
• CHAN c: 

PAR       

  c ! E                    v := e  

  c ? v 

 

• CHAN c: 

SEQ 

  c ! 0    STOP 

  VAR v: 

  c ? v  

 

• PAR    ALT 

  a ? x     a ? x 

  b ? y       b ? y 

       b ? y 

        a ? x 
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 

 

 

These identities hold partly because of the CSP basis but also 

because of the careful design of the syntax and semantics. 

The laws of occam programming, Theoretical Computer Science 60 (1988), 177-229  



MPI 
#include "mpi.h"  

#include <stdio.h>  

#define HOST_ID 0  

int main(int argc, char* argv) { 

  int myid, numprocs; int i, n; int tag = 23; /* arbitrary value */ MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid); 

 if (myid == HOST_ID)  { /* HOST */  

  int reply;  

  MPI_Status status;  

  n = 4;  

  printf("Host Process about to broadcast\n");  

  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);  

  printf("Broadcast %d\n", n);  

  for (i=1;i<numprocs; i++) {  

   printf("Host receiving reply %d\n", i);  

   MPI_Recv(&reply, 1, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &status);  

   printf("Received %d from process %d\n", reply, status.MPI_SOURCE); }; }  

 else { /* WORKER */  

  int reply;  

  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);  

  reply = n + myid; MPI_Send(&reply, 1, MPI_INT, 0, tag, MPI_COMM_WORLD); }; 
MPI_Finalize(); }  
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Of course, Real Programmers would use FORTRAN. 

http://www.pbm.com/~lindahl/real.programmers.html


SIMD and MIMD 

• Remember Harvard architectures? 

– eg, Microchip PIC: separate data and program memory 
 

• There was once a time when  

1. Instruction fetch/decode was expensive 

2. Bus communication was (or might be) cheap 
 

• Single Instruction Multiple Data was born 

– ICL DAP, CM1 etc. Useful for radar, vision, search. 
 

• Actually, a lot of MPI Fortran looks rather like this. 
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Within MIMD 

• There are a lot of different memory models 

– Shared nothing (message passing) 

– Symmetric (SMP) 

– Partially shared 

– Hierarchical (NUMA) 

– Hybrid 

• and lots of data coherence models 
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Theoretical approaches 

• The PRAM: magical shared memory 

– A large set of processors, running their own codes but 
sharing a common address space and running in 
lockstep. 

– Came in varieties: EREW, CREW etc. which made 
different decisions about simultaneous accesses to a 
single address 

• Many algorithms depended at compile-time on problem 
size. 
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Memory networks 

• PRAM is unbuildable. Accessing big (size N) memory requires: 

– Money: O(N) for the memory and processors 

– Money: O(N ln N) for a routing network 

– Time: O(ln N) to get the messages through an uncongested 
network (and potentially much longer if congested). 
 

• While we are at it, lets add intelligence to the network. 

– Merge read requests 

– Fetch-and-add: rank assignment, prefix sum 

– Fetch-and-swap: list builder 

– Reduce: for convergence tests etc. 
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Valiant (BSP) to the rescue 

• Memory delay can be hidden by O(ln N) excess 
parallelism. 

• Memory bandwidth is an absolute constraint. 

• This approach was used by Burton-Smith in the HEP 
and Tera machines. 

• Now split into three camps:  

– Aggressive fine grained (Cray MTA) 

– Fine-grained but few threads (XMOS, META) 

– Opportunistic (Intel HyperThreading) 

• Was popular on conventional architectures at Oxford. 
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The end of history 

• Why did almost none of this catch on? 

– Poor backward compatibility: new languages 

– Academic-led: no real industrial pull 

– Often static parallelism: difficult to use in, eg, an 
operating system or a web application 

– Much of it didn’t work very well.  

• But the Imagination META is a success in mixed 
DSP+UI 

• the alternative for these applications is the 
heterogeneous OMAP (ARM+VLIW etc) which, as it 
happens contains Imagination’s PowerVR technology. 
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PURE Sensia Network audio player / DAB / FM clock radio 
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A more recent try: transactional memory 

• Hardware (Rock) and Java (DSTM2) support from Sun. 

• A sequence of memory operations either executes completely (commits) 
or has no effect (aborts). 

• Works well if uncontended…but then so do a lot of techniques! 

• Can be implemented in HW, SW or hybrid.  

• Needs careful hybrid optimisation for contended case. 

19 



Typical Modern Hardware 

• Not much parallel architecture. 

• Just implements what the hardware designer can easily 
provide; an awkward mix of (hierarchical) shared memory 
and message passing, often with poor synchronisation. 

• What about HW/SW co-design? 

– Cray have abandoned FPGA boards. 

– Bluespec is Haskel 

– SystemVerilog has OO features 

– SystemC is widely used for high-level simulation. 
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AMD and Intel Multi-core 
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and inside each chip 
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IBM/Sony/Toshiba Cell 
• Cell is a heterogeneous chip multiprocessor that consists of an IBM 64-bit Power Architecture™ core, augmented with 

eight specialized co-processors based on a novel single-instruction multiple-data (SIMD) architecture called Synergistic 
Processor Unit (SPU), which is for data-intensive processing, like that found in cryptography, media and scientific 
applications.  
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Nvidia CUDA GPUs 

• Terrifyingly complex: 

CUDA threads may access data from 
multiple memory spaces during their 
execution as illustrated by Figure 2-2. 
Each thread has a private local 
memory. Each thread block has a 
shared memory visible to all threads of 
the block and with the same lifetime as 
the block. Finally, all threads have 
access to the same global memory. 

There are also two additional read-only 
memory spaces accessible by all 
threads: the constant and texture 
memory spaces. The global, constant, 
and texture memory spaces are 
optimized for different memory usages. 
Texture memory also offers different 
addressing modes, as well as data 
filtering, for some specific data formats. 
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AMD (ATI) Stream Computing  

• Like Nvidia, only different… 
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XMOS: Transputers  
(and Burton-Smith) ride again 

• “Software Defined Silicon” (well, maybe) 

• Fixed eight threads per processor (cf Tera) 

• Hardware routing switch (cf INMOS C104) 

• Initially horrid power consumption 

• XC programming language (cf occam, Handel C) 
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Imagination META 
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Java 

• The Java authors adopted a version of pthreads’ mutexes 
and condition variables. The standard usage is: 

 

  synchronized foo(…) throws InterruptedException { 

   while (! OK_to_proceed) wait(); 

   /* DO_STUFF */ 

   notifyAll(); } 
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Java wait() is truly horrid 

• while -> if results in random failure 

 

 

  synchronized foo(…) throws InterruptedException { 

   while (! OK_to_proceed) wait(); 

   /* DO_STUFF */ 

   notifyAll(); } 
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Java wait() is truly horrid 

• while -> if results in random failure 

• What’s with InterruptedException? 

 

  synchronized foo(…) throws InterruptedException { 

   while (! OK_to_proceed) wait(); 

   /* DO_STUFF */ 

   notifyAll(); } 
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Java wait() is truly horrid 

• while -> if results in random failure 

• What’s with InterruptedException? 

• Why is the lock exposed to class users? 

 

 

  synchronized foo(…) throws InterruptedException { 

   while (! OK_to_proceed) wait(); 

   /* DO_STUFF */ 

   notifyAll(); } 
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Java wait() is truly horrid 

• while -> if results in random failure 

• What’s with InterruptedException? 

• Why is the lock exposed to class users? 

• How does it scale? 

 

  synchronized foo(…) throws InterruptedException { 

   while (! OK_to_proceed) wait(); 

   /* DO_STUFF */ 

   notifyAll(); } 
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Java wait() is truly horrid 

• while -> if results in random failure 

• What’s with InterruptedException? 

• Why is the lock exposed to class users? 

• How does it scale? 

• What are the fairness properties? 
  synchronized foo(…) throws InterruptedException { 

   while (! OK_to_proceed) wait(); 

   /* DO_STUFF */ 

   notifyAll(); } 
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Java.util.concurrency 

• Java 1.5 fix to the major known 
problems 

• A reasonable implementation of 
a bad model 

• Takes advantage of optimistic 
concurrency primitives 
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http://www.amazon.com/gp/product/images/0321349601/ref=dp_image_0/102-6862696-3380969?ie=UTF8&n=283155&s=books


Old style 

 

 

public final class Counter { 

private long value = 0; 

public synchronized long getValue() { 

return value; } 

public synchronized long increment() { 

return ++value; } }  
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New style 

public class NonblockingCounter {  

 private AtomicInteger value;  

 public int getValue() {  

  return value.get(); }  

 public int increment() {  

  int v;  

  do  

   { v = value.get(); }  

   while (!value.compareAndSet(v, v + 1));  

  return v + 1; } } 

 

[http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html] 

Think about the ABA problem: not an issue here 
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AtomicInteger is fast 

• compareAndSet is implemented through 

sun.misc.Unsafe 

• The JVM has the opportunity to implement this using 
       LOCK CMPXCHG r/m32, r32  

on Intel 486+ processors 

• The uncontended case is fast 

• What about fairness? Infinite delay is “unlikely”, and 

there’s always progress. 
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Frighten yourself 
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