
Issues in
Distributed
Computing

Denis A Nicole
2010-11-15

Scope
• This talk is not about Distributed Computing. That topic

addresses other issues:

– Unreliable communications/systems

– Trust and trust boundaries

– Hetrogeneous systems, although these will creep in…

• Today, we are discussing Parallel Computing

 [No references, just keywords. Use Google]

2

A sad story

• You throw together (pair program) a fast new concurrent
system.

– It goes fast

– It works during testing (you can’t type very fast)

– The customer loves it (on time and on cost)

• You go back to U Waterloo(?) to finish your degree.

3

Later you read about your system…

4
http://sunnyday.mit.edu/papers/therac.pdf

http://sunnyday.mit.edu/papers/therac.pdf

It just gets worse
1. You need enough locks to prevent uncontrolled data sharing.

This causes death.

You are now one step ahead. You may not sell any product, but
you won't have to explain your code to a coroner, as it
probably does not do anything.

2. You might now get deadlock. Use a standard technique (eg
breaking symmetry/ breaking cycles or preventing resource
filling) or work something out and test your idea by model
checking.

You now have code that works. Marketing can probably sell it.
Of course, there's every probability that your carefully locked
code runs slower than a sequential solution.

5

Historic approaches

• Programming languages were fashionable in the ’80s

“Embrace our new world and the advantages of
parallelism will flow automatically.”

6

So we tried

• Dataflow: parallel subexpression evaluation

– Manchester Dataflow

– SISAL: single assignment language

• Functional: parallel argument evaluation

– Transputer-based Alice hardware and (eager) Hope

– Lazy languages: Miranda (David Turner), Orwell, Haskell

• Leading to Bluespec and other current activity

• Logic

– Parlog: AND parallel Prolog

 7

And tried…

• Parallel Objects

– Doom: hardware (too-slow processor coupled to vector units with
too-weak memory addressing)

– Pool: inheritance can interact badly with parallelism.
(Inheritance Anomaly)

• Parallel processes

– Transputers and now the XMOS XC-1.

– occam: static compile-time concurrency, leading to XC.

– MPI is still the preferred way of coding big science

8

occam has an algebra
• CHAN c:

PAR

 c ! E v := e

 c ? v

• CHAN c:

SEQ

 c ! 0 STOP

 VAR v:

 c ? v

• PAR ALT

 a ? x a ? x

 b ? y b ? y

 b ? y

 a ? x

9







These identities hold partly because of the CSP basis but also

because of the careful design of the syntax and semantics.

The laws of occam programming, Theoretical Computer Science 60 (1988), 177-229

MPI
#include "mpi.h"

#include <stdio.h>

#define HOST_ID 0

int main(int argc, char* argv) {

 int myid, numprocs; int i, n; int tag = 23; /* arbitrary value */ MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid);

 if (myid == HOST_ID) { /* HOST */

 int reply;

 MPI_Status status;

 n = 4;

 printf("Host Process about to broadcast\n");

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 printf("Broadcast %d\n", n);

 for (i=1;i<numprocs; i++) {

 printf("Host receiving reply %d\n", i);

 MPI_Recv(&reply, 1, MPI_INT, MPI_ANY_SOURCE, tag, MPI_COMM_WORLD, &status);

 printf("Received %d from process %d\n", reply, status.MPI_SOURCE); }; }

 else { /* WORKER */

 int reply;

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 reply = n + myid; MPI_Send(&reply, 1, MPI_INT, 0, tag, MPI_COMM_WORLD); };
MPI_Finalize(); }

10

Of course, Real Programmers would use FORTRAN.

http://www.pbm.com/~lindahl/real.programmers.html

SIMD and MIMD

• Remember Harvard architectures?

– eg, Microchip PIC: separate data and program memory

• There was once a time when

1. Instruction fetch/decode was expensive

2. Bus communication was (or might be) cheap

• Single Instruction Multiple Data was born

– ICL DAP, CM1 etc. Useful for radar, vision, search.

• Actually, a lot of MPI Fortran looks rather like this.

11

Within MIMD

• There are a lot of different memory models

– Shared nothing (message passing)

– Symmetric (SMP)

– Partially shared

– Hierarchical (NUMA)

– Hybrid

• and lots of data coherence models

12

Theoretical approaches

• The PRAM: magical shared memory

– A large set of processors, running their own codes but
sharing a common address space and running in
lockstep.

– Came in varieties: EREW, CREW etc. which made
different decisions about simultaneous accesses to a
single address

• Many algorithms depended at compile-time on problem
size.

13

14

Memory networks

• PRAM is unbuildable. Accessing big (size N) memory requires:

– Money: O(N) for the memory and processors

– Money: O(N ln N) for a routing network

– Time: O(ln N) to get the messages through an uncongested
network (and potentially much longer if congested).

• While we are at it, lets add intelligence to the network.

– Merge read requests

– Fetch-and-add: rank assignment, prefix sum

– Fetch-and-swap: list builder

– Reduce: for convergence tests etc.

15

Valiant (BSP) to the rescue

• Memory delay can be hidden by O(ln N) excess
parallelism.

• Memory bandwidth is an absolute constraint.

• This approach was used by Burton-Smith in the HEP
and Tera machines.

• Now split into three camps:

– Aggressive fine grained (Cray MTA)

– Fine-grained but few threads (XMOS, META)

– Opportunistic (Intel HyperThreading)

• Was popular on conventional architectures at Oxford.
16

The end of history

• Why did almost none of this catch on?

– Poor backward compatibility: new languages

– Academic-led: no real industrial pull

– Often static parallelism: difficult to use in, eg, an
operating system or a web application

– Much of it didn’t work very well.

• But the Imagination META is a success in mixed
DSP+UI

• the alternative for these applications is the
heterogeneous OMAP (ARM+VLIW etc) which, as it
happens contains Imagination’s PowerVR technology.

17

PURE Sensia Network audio player / DAB / FM clock radio

18

A more recent try: transactional memory

• Hardware (Rock) and Java (DSTM2) support from Sun.

• A sequence of memory operations either executes completely (commits)
or has no effect (aborts).

• Works well if uncontended…but then so do a lot of techniques!

• Can be implemented in HW, SW or hybrid.

• Needs careful hybrid optimisation for contended case.

19

Typical Modern Hardware

• Not much parallel architecture.

• Just implements what the hardware designer can easily
provide; an awkward mix of (hierarchical) shared memory
and message passing, often with poor synchronisation.

• What about HW/SW co-design?

– Cray have abandoned FPGA boards.

– Bluespec is Haskel

– SystemVerilog has OO features

– SystemC is widely used for high-level simulation.

20

AMD and Intel Multi-core

21

and inside each chip

22

IBM/Sony/Toshiba Cell
• Cell is a heterogeneous chip multiprocessor that consists of an IBM 64-bit Power Architecture™ core, augmented with

eight specialized co-processors based on a novel single-instruction multiple-data (SIMD) architecture called Synergistic
Processor Unit (SPU), which is for data-intensive processing, like that found in cryptography, media and scientific
applications.

23

Nvidia CUDA GPUs

• Terrifyingly complex:

CUDA threads may access data from
multiple memory spaces during their
execution as illustrated by Figure 2-2.
Each thread has a private local
memory. Each thread block has a
shared memory visible to all threads of
the block and with the same lifetime as
the block. Finally, all threads have
access to the same global memory.

There are also two additional read-only
memory spaces accessible by all
threads: the constant and texture
memory spaces. The global, constant,
and texture memory spaces are
optimized for different memory usages.
Texture memory also offers different
addressing modes, as well as data
filtering, for some specific data formats.

24

AMD (ATI) Stream Computing

• Like Nvidia, only different…

25

XMOS: Transputers
(and Burton-Smith) ride again

• “Software Defined Silicon” (well, maybe)

• Fixed eight threads per processor (cf Tera)

• Hardware routing switch (cf INMOS C104)

• Initially horrid power consumption

• XC programming language (cf occam, Handel C)

26

Imagination META

27

Java

• The Java authors adopted a version of pthreads’ mutexes
and condition variables. The standard usage is:

 synchronized foo(…) throws InterruptedException {

 while (! OK_to_proceed) wait();

 /* DO_STUFF */

 notifyAll(); }

28

Java wait() is truly horrid

• while -> if results in random failure

 synchronized foo(…) throws InterruptedException {

 while (! OK_to_proceed) wait();

 /* DO_STUFF */

 notifyAll(); }

29

Java wait() is truly horrid

• while -> if results in random failure

• What’s with InterruptedException?

 synchronized foo(…) throws InterruptedException {

 while (! OK_to_proceed) wait();

 /* DO_STUFF */

 notifyAll(); }

30

Java wait() is truly horrid

• while -> if results in random failure

• What’s with InterruptedException?

• Why is the lock exposed to class users?

 synchronized foo(…) throws InterruptedException {

 while (! OK_to_proceed) wait();

 /* DO_STUFF */

 notifyAll(); }

31

Java wait() is truly horrid

• while -> if results in random failure

• What’s with InterruptedException?

• Why is the lock exposed to class users?

• How does it scale?

 synchronized foo(…) throws InterruptedException {

 while (! OK_to_proceed) wait();

 /* DO_STUFF */

 notifyAll(); }

32

Java wait() is truly horrid

• while -> if results in random failure

• What’s with InterruptedException?

• Why is the lock exposed to class users?

• How does it scale?

• What are the fairness properties?
 synchronized foo(…) throws InterruptedException {

 while (! OK_to_proceed) wait();

 /* DO_STUFF */

 notifyAll(); }

33

Java.util.concurrency

• Java 1.5 fix to the major known
problems

• A reasonable implementation of
a bad model

• Takes advantage of optimistic
concurrency primitives

34

http://www.amazon.com/gp/product/images/0321349601/ref=dp_image_0/102-6862696-3380969?ie=UTF8&n=283155&s=books

Old style

public final class Counter {

private long value = 0;

public synchronized long getValue() {

return value; }

public synchronized long increment() {

return ++value; } }

35

New style

public class NonblockingCounter {

 private AtomicInteger value;

 public int getValue() {

 return value.get(); }

 public int increment() {

 int v;

 do

 { v = value.get(); }

 while (!value.compareAndSet(v, v + 1));

 return v + 1; } }

[http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html]

Think about the ABA problem: not an issue here

36

http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www-128.ibm.com/developerworks/java/library/j-jtp04186/index.html

AtomicInteger is fast

• compareAndSet is implemented through

sun.misc.Unsafe

• The JVM has the opportunity to implement this using
 LOCK CMPXCHG r/m32, r32

on Intel 486+ processors

• The uncontended case is fast

• What about fairness? Infinite delay is “unlikely”, and

there’s always progress.

37

Frighten yourself

38

